On-demand

Multiscale Modeling of Gas Transport and Storage in Shale Resources

$99.00

0
Add to compare
Format

On-demand

Duration

1 hr

Level

Certificate

Yes

Language

English

Access

1 Year 24/7

Publisher

AAPG

What you will learn

The objective of the proposed work is to present a model for the fluid transport in nanopores of shale gas resources and to develop a framework for upscaling of the transport from nanopores into the micro- and macrofracture networks. The proposed work can lead to development of effective methods for gas production and CO2 storage in subsurface geological structures.

Description

The gas transport in organic-rich shales involves different length-scales, from organic and inorganic pores to macro- and macrofractures. In order to upscale the fluid transport from nanoscale (flow through nanopores) to larger scales (to micro- and macrofractures), multicontinuum methodology is planned to be used. Governing equations describing the gas mass balance in multicontinuum models are the same as in a single-continuum model; however, they require special considerations for volume consistency and the mass-exchange terms. In this technique, unlike the conventional approaches, spatial coordinates of each continuum is not explicitly defined. Furthermore, the fluid transport and storage of each continuum are governed by different physics. Prior to applying the multicontinuum approach, well-founded techniques for simulating the fluid transport in nonoscale pores are required.

The nanoscale pores and capillaries bring new molecular level non-Darcian transport effects into the simulation. Therefore, conventional permeability concept, which is usually used to describe the transport of single-phase fluids in reservoir simulators, is no-longer valid.

Due to the recent achievements in microfabrication, considerable interests in the gas transport within miniaturized channels has emerged in other disciplines, such as Physics and material sciences. Several reduced-order Boltzmann equation methods, such as Grad’s thirteen moment method are proposed to simulate the fluid transport with less computational times.

In the proposed work, the focus is on the upscaling of the transport phenomena using multicontinuum methodology by applying the recently-developed regularized Grad’s thirteen moment simulation technique to the shale nanopores.

Curriculum

  • Different Scales in Shale Gas Recovery
  • Flow Regime Characterization
  • Boundary Conditions
  • Sortion Modeling
  • Model Results for Permeability
  • Core Plug Scale
  • Experimental Measurement
  • Permeability Measurement
  • Experimental Results - Steady State
  • Flow in Fractured Porous Media
  • Image Based Numerical Modeling
  • Discrete Models
  • Conclusion

Target Audience

All geoscientists and engineers working in shale plays who wish to gain an understanding of gas transport and storage.

Specification: Multiscale Modeling of Gas Transport and Storage in Shale Resources

Format

On-demand

Duration

1 hr

Level

Certificate

Yes

Language

English

Access

1 Year 24/7

Publisher

AAPG

About the Publisher

  • AAPG
  • Store Name: AAPG
  • American Association of Petroleum GeologistsSince its founding in 1917, the American Association of Petroleum Geologists has been a pillar of the worldwide scientific community. The original purpo...   Read More >
  • Read More

Reviews

0.0
0
0
0
0
0

Be the first to review “Multiscale Modeling of Gas Transport and Storage in Shale Resources”

This site uses Akismet to reduce spam. Learn how your comment data is processed.

There are no reviews yet.

Multiscale Modeling of Gas Transport and Storage in Shale Resources
Multiscale Modeling of Gas Transport and Storage in Shale Resources

$99.00

$99.00

SKU: PL 876914 Category: Tags: , ,
0
Add to compare
Format

On-demand

Duration

1 hr

Level

Certificate

Yes

Language

English

Access

1 Year 24/7

Publisher

AAPG

Sold by
AAPG
@ AAPG
Do NOT follow this link or you will be banned from the site!

Forgot password?

Enter your account data and we will send you a link to reset your password.

Your password reset link appears to be invalid or expired.

Log in

Privacy Policy

Petrolessons
Reset Password
Compare items
  • Total (0)
Compare
0